935 research outputs found

    Superconductivity in higher titanium oxides

    Full text link
    Recent renewal of the highest transition temperature in a conventional superconductor of the sulfer hydride attracts much attention to exploring simple compounds with the lighter elements, situated in unconventional conditions. We report the discovery of superconductivity in simple oxides of Ti4O7 and g-Ti3O5 in a thin-film form having deliberately tuned epitaxial structures and off-stoichiometry. These higher titanium oxides join in a class of simple-oxide superconductors, and g-Ti3O5 now holds the highest superconducting transition temperature of 7.1 kelvin among them. The mechanism behind the superconductivity is discussed on the basis of electrical measurements and theoretical predictions. We conclude that superconductivity arises from unstabilized bipolaronic insulating states.Comment: 25 pages, 4 figures in main text, 14 pages, 11 figures in supplemental informatio

    Hole Transport in p-Type ZnO

    Full text link
    A two-band model involving the A- and B-valence bands was adopted to analyze the temperature dependent Hall effect measured on N-doped \textit{p}-type ZnO. The hole transport characteristics (mobilities, and effective Hall factor) are calculated using the ``relaxation time approximation'' as a function of temperature. It is shown that the lattice scattering by the acoustic deformation potential is dominant. In the calculation of the scattering rate for ionized impurity mechanism, the activation energy of 100 or 170 meV is used at different compensation ratios between donor and acceptor concentrations. The theoretical Hall mobility at acceptor concentration of 7×10187 \times 10^{18} cm3^3 is about 70 cm2^2V1^{-1}s1^{-1} with the activation energy of 100 meV and the compensation ratio of 0.8 at 300 K. We also found that the compensation ratios conspicuously affected the Hall mobilities.Comment: 5page, 5 figures, accepted for publication in Jpn. J. Appl. Phy

    Gallium concentration dependence of room-temperature near-bandedge luminescence in n-type ZnO:Ga

    Full text link
    We investigated the optical properties of epitaxial \textit{n}-type ZnO films grown on lattice-matched ScAlMgO4_4 substrates. As the Ga doping concentration increased up to 6×10206 \times 10^{20} cm3^{-3}, the absorption edge showed a systematic blueshift, consistent with the Burstein-Moss effect. A bright near-bandedge photoluminescence (PL) could be observed even at room temperature, the intensity of which increased monotonically as the doping concentration was increased except for the highest doping level. It indicates that nonradiative transitions dominate at a low doping density. Both a Stokes shift and broadening in the PL band are monotonically increasing functions of donor concentration, which was explained in terms of potential fluctuations caused by the random distribution of donor impurities.Comment: accepted for publication for Applied Physics Letters 4 figure

    Why Some Interfaces Cannot be Sharp

    Full text link
    A central goal of modern materials physics and nanoscience is control of materials and their interfaces to atomic dimensions. For interfaces between polar and non-polar layers, this goal is thwarted by a polar catastrophe that forces an interfacial reconstruction. In traditional semiconductors this reconstruction is achieved by an atomic disordering and stoichiometry change at the interface, but in multivalent oxides a new option is available: if the electrons can move, the atoms don`t have to. Using atomic-scale electron energy loss spectroscopy we find that there is a fundamental asymmetry between ionically and electronically compensated interfaces, both in interfacial sharpness and carrier density. This suggests a general strategy to design sharp interfaces, remove interfacial screening charges, control the band offset, and hence dramatically improving the performance of oxide devices.Comment: 12 pages of text, 6 figure

    Monte-Carlo simulation of localization dynamics of excitons in ZnO and CdZnO quantum well structures

    Get PDF
    Localization dynamics of excitons was studied for ZnO/MgZnO and CdZnO/MgZnO quantum wells (QW). The experimental photoluminescence (PL) and absorption data were compared with the results of Monte Carlo simulation in which the excitonic hopping was modeled. The temperature-dependent PL linewidth and Stokes shift were found to be in a qualitatively reasonable agreement with the hopping model, with accounting for an additional inhomogeneous broadening for the case of linewidth. The density of localized states used in the simulation for the CdZnO QW was consistent with the absorption spectrum taken at 5 K.Comment: 4 figures, to appear in J. Appl. Phy

    Photoemission study of TiO2/VO2 interfaces

    Full text link
    We have measured photoemission spectra of two kinds of TiO2_2-capped VO2_2 thin films, namely, that with rutile-type TiO2_2 (r-TiO2_2/VO2_2) and that with amorphous TiO2_2 (a-TiO2_2/VO2_2) capping layers. Below the Metal-insulator transition temperature of the VO2_2 thin films, 300\sim 300 K, metallic states were not observed for the interfaces with TiO2_2, in contrast with the interfaces between the band insulator SrTiO3_3 and the Mott insulator LaTiO3_3 in spite of the fact that both TiO2_2 and SrTiO3_3 are band insulators with d0d^0 electronic configurations and both VO2_2 and LaTiO3_3 are Mott insulators with d1d^1 electronic configurations. We discuss possible origins of this difference and suggest the importance of the polarity discontinuity of the interfaces. Stronger incoherent part was observed in r-TiO2_2/VO2_2 than in a-TiO2_2/VO2_2, suggesting Ti-V atomic diffusion due to the higher deposition temperature for r-TiO2_2/VO2_2.Comment: 5 pages, 6 figure

    Analysis on reflection spectra in strained ZnO thin films

    Full text link
    Thin films of laser molecular-beam epitaxy grown ZnO films were studied with respect to their optical properties. 4-K reflectivity was used to analyze various samples grown at different biaxial in-plane strain. The spectra show two structures at 3.37 eV corresponding to the A-free exciton transition and at 3.38 eV corresponding to the B-free exciton transition. Theoretical reflectivity spectra were calculated using the spatial dispersion model. Thus, the transverse energies, the longitudinal transversal splitting (ELT,), the oscillator strengths, and the damping parameters were determined for both the A- and B-free excitons of ZnO. As a rough trend, the strain dependence of the energy E_LT for the A-excitons is characterized by a negatively-peaking behavior with a minimum around the zero strain, while ELT for the B-excitons is an increasing function of the strain field values.Comment: 4 pages, 2 figures, 1 table, conference: ICMAT2005 (Singapore), to appear in an issue of J. Cryst. Growt

    Tailoring a two-dimensional electron gas at the LaAlO3/SrTiO3 (001) interface by epitaxial strain

    Full text link
    Recently a metallic state was discovered at the interface between insulating oxides, most notably LaAlO3 and SrTiO3. Properties of this two-dimensional electron gas (2DEG) have attracted significant interest due to its potential applications in nanoelectronics. Control over this carrier density and mobility of the 2DEG is essential for applications of these novel systems, and may be achieved by epitaxial strain. However, despite the rich nature of strain effects on oxide materials properties, such as ferroelectricity, magnetism, and superconductivity, the relationship between the strain and electrical properties of the 2DEG at the LaAlO3/SrTiO3 heterointerface remains largely unexplored. Here, we use different lattice constant single crystal substrates to produce LaAlO3/SrTiO3 interfaces with controlled levels of biaxial epitaxial strain. We have found that tensile strained SrTiO3 destroys the conducting 2DEG, while compressively strained SrTiO3 retains the 2DEG, but with a carrier concentration reduced in comparison to the unstrained LaAlO3/SrTiO3 interface. We have also found that the critical LaAlO3 overlayer thickness for 2DEG formation increases with SrTiO3 compressive strain. Our first-principles calculations suggest that a strain-induced electric polarization in the SrTiO3 layer is responsible for this behavior. It is directed away from the interface and hence creates a negative polarization charge opposing that of the polar LaAlO3 layer. This both increases the critical thickness of the LaAlO3 layer, and reduces carrier concentration above the critical thickness, in agreement with our experimental results. Our findings suggest that epitaxial strain can be used to tailor 2DEGs properties of the LaAlO3/SrTiO3 heterointerface
    corecore